Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil
LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying
Key Laboratory of Soft Soils and Geo environmental Engineering,  Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(2365KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the application of particle flow code (PFC) numerical simulation in the research of geotechnical behavior of lunar soil, main research achievements were briefly introduced. The particle contact model was modified by considering the particle interaction and the effect of low gravity. The micro parameters of particle contact model was determination, as well as the effect on macroscopic mechanical properties of lunar soil. Make cluster of particles to simulate the particle shape of lunar soil/lunar soil simulant by using the command “Clump”. Take simulation study of the macroscopic mechanical properties of lunar soil and take comparative study of the differences with soil on the earth. The effect of low gravity on the interaction mechanism between lunar soil and wheel was analyzed, as well as the tractive efficiency. Numerical simulation and coupling analysis of the basic geotechnical engineering problem of lunar soil was taken. Along with the development of computer technology, the application of PFC numerical simulation in the research of geotechnical behavior of lunar soil should take the following factors into account for multi scale analysis: an appropriate particle contact model, the effect of particle shape of the real lunar soil and the particular environment like the low gravity, and the coupling other numerical simulation methods.



Published: 15 October 2015
CLC:  TU 443  
Cite this article:

LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1679-1691.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.09.010     OR     http://www.zjujournals.com/eng/Y2015/V49/I9/1679


颗粒流数值模拟在月壤岩土问题研究中的应用概况

总结颗粒流数值模拟在月壤岩土问题研究中的应用,取得的主要成果:考虑粒间作用力及低重力的影响对月壤颗粒接触力学模型进行修正;确定模型的细观参数及其对宏观力学性质的影响;利用“Clump”命令生成颗粒簇对月壤/模拟月壤的颗粒形状进行模拟;进行月壤基本力学性质的模拟研究及其与地面土壤的对比研究;分析月面低重力场对月壤 车轮相互作用机理及牵引性能的影响;进行月壤基本岩土工程问题的模拟仿真及数值耦合分析.随着计算机技术的发展,选择合适的颗粒接触模型,考虑月壤颗粒的实际形状和低重力场等的影响,耦合其他数值模拟方法实现多尺度模拟分析是今后对月壤岩土问题进行颗粒流数值模拟研究的主要方向,也是技术难点所在.

[1] 欧阳自远.月球科学概论[M]. 北京:中国宇航出版社, 2005.
[2] CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[C] ∥ Proceedings of the Symposium of the International Society for Rock Mechanics. Rotterdam: Balkama A A, 1971:8-12.
[3] CUNDALL P A, STRACK O. A discrete numerical model for granular assemblies [J]. Geo technique, 1979, 29(1): 47-65.
[4] ZHU H, ZHOU Z Y, YANG R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings [J]. Chemical Engineering Science, 2008, 63(23): 5728-5770.
[5] 钟世英, 凌道盛, 吴晓君, 等. 月壤岩土工程问题研究进展[J]. 浙江大学学报:工学版, 2012, 46(5): 777-784.
ZHONG Shi ying, LING Dao sheng, WU Xiao jun, et al. Review on geotechnical behavior of lunar soil [J]. Journal of Zhejiang University:Engineering Science, 2012, 46(5): 777-784.
[6] CARRIER W D, MITCHELL J K, MAHMOOD A. The nature of lunar soil [J]. Journal of the Soil Mechanic Sand Foundation Division, 1973, 99(10): 813-832.
[7] MCKAY D S, HEIKEN G H, BASU A, et al. The lunar regolith [C] ∥ Lunar Source Book. Cambridge: Cambridge University Press, 1991: 285-356.
[8] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar Sourcebook [M]. London: Cambridge University Press, 1991.
[9] HEYWOOD H. Particle size and shape distribution for lunar fines sample 12057, 72 [C] ∥ Proceedings of the 2nd Lunar Science Conference. Houston: MIT Press, 1971: 1989-2001.
[10] 郑永春,欧阳自远,王世杰.月壤的物理和机械性[J].矿物岩石,2004, 24(4): 14-19.
ZHENG Yong chun, OUYANG Zi yuan, WANG Shi jie. Physical and mechanical properties of regolith [J]. Journal of Mineralogy and Petrology, 2004, 24(4): 14-19.
[11] 李丽华, 唐辉明, 刘数华. 月壤及模拟月壤微观结构的研究[J]. 岩土力学, 2012, 33(1): 31-34.
LI Li hua, TANG Hui ming, LIU Shu hua. Micro structure of lunar soil and lunar soil simulant [J]. Rock and Soil Mechanics, 2012, 33(1): 31-34.
[12] 郑永春, 王世杰, 刘建忠, 等. 模拟月壤研制的初步设想[J]. 空间科学学报, 2005, 25(1): 70-75.
ZHENG Yong chun, WANG Shi jie, LIU Jian zhong, et al. A review and prospect for developing of lunar soil simulants [J]. Chinese Journal of Space Science, 2005, 25(1): 70-75.
[13] DAVID M, JAMES C, WALTER B, et al. JSC 1: a new lunar soil simulant [C] ∥ Proceedings of the 4th International Conference on Engineering, Construction and Operations in Space. New York: ASCE, 1994: 857-866.
[14] PERKINS S W, MADSON C R. Mechanical and load settlement characteristics of two lunar soil simulants [J]. Journal of Aerospace Engineering, 1996, 9(1): 1-9.
[15] HILL E, MELLIN M J, DEANE B, et al. Apollo sample 70051 and high  and low Ti lunar soil simulants MLS 1A and JSC 1A: implications for future lunar exploration [J]. Journal of Geophysical Research, 2007, 112: E02006.
[16] KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of lunar soil simulant manufactured in Japan [C] ∥ Proceedings of the 6th International Conference on Engineering, Construction and Operations in Space. Albuquerque:ASCE, 1998:462-468.
[17] ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS 1 lunar soil stimulant [J]. Advance in Space Research, 2009, 43(3): 448-454.
[18] 蒋明镜, 李立青. TJ 1模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214.
JIANG Ming jing, LI Li qing. Development of TJ 1 lunar soil simulant [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214.
[19] 李建桥, 邹猛,贾阳, 等.用于月面车辆力学试验的模拟月壤研究[J]. 岩土力学,2008, 29(6): 1557-1561.
LI Jian qiao, ZOU Meng, JIA Yang, et al. lunar soil simulant for vehicle terra mechanics research in laboratory [J]. Rock and Soil Mechanics, 2008, 29(6): 1557-1561.
[20] LI Y, LIU J, YUE Z. NAO 1: Lunar high land soil simulant developed in China [J]. Journal of Aerospace Engineering, 2009, 22(1): 53-57.
[21] ZENG X W, HE C M, WILKINSON A. Geotechnical properties of NU LHT 2M lunar high land simulant [J]. Journal of Aerospace Engineering, 2010, 23(4): 213-218.
[22] HE C,ZENG X W,WILKINSON A.Geotechnical properties of GRC 3 lunar simulant [J]. Journal of Aerospace Engineering, 2013,26(3): 528-534.
[23] SUESCUN FLOREZ E, ROSLYYAKOV S, ISKANDER M, et al. Geotechnical properties of BP 1 lunar regolith simulant [J]. Journal of Aerospace Engineering, 2014:04014124.
[24] CARRIER W D. Particle size distribution of lunar soil [J]. Journal of Geo technical and Geo environmental Engineering, 2003, 129(10): 956-959.
[25] COSTES N C, CARRIER W D, MITCHELL JK, et al. Apollo 11: soil mechanics results [J]. Journal of Soil Mechanics and Foundations Division. 1970, 96(6): 2045-2080.
[26] BROMWELL L G. The friction of quartz in high vacuum [R]. Cambridge, MIT: Department of Civil and Environment Engineering, 1966.
[27] NELSON J D. Environmental effects on engineering properties of simulated lunar soils [D]. Chicago: Illinois Institute of Technology, 1967.
[28] CHANG C S, HICHER P Y. Model for granular materials with surface energy force [J]. Journal of Aerospace Engineering, 2009, 22 (1): 43-52.
[29] PERKO H A, NELSON J D,SADEH W Z. Surface cleanliness effect on lunar soil shear strength [J].Journal of Geotechnical and Geo environmental Engineering, 2001, 127(4): 371-383.
[30] Itasca Consulting Group, Inc. The manuals of particle flow code in 2 Dimension. Version 30 [M]. Minneapolis:Itasca, 2002.
[31] Itasca Consulting Group, Inc. The manuals of particle flow code in 3 Dimension, Version 40 [M]. Minneapolis: Itasca, 2008.
[32] 郑敏,蒋明镜, 申志福. 简化接触模型的月壤离散元数值分析[J]. 岩土力学, 2011, 31(增1): 766-771.
ZHENG Min, JIANG Ming jing, SHEN Zhi fu. Discrete element numerical analysis of lunar soil with a simplified contact model [J]. Rock and Soil Mechanics, 2011, 31(Suppl.1): 766-771.
[33] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies [J]. Computers and Geotechnics, 2003, 30(7): 579-597.
[34] JIANG M J, YU H S, HARRIS D.A novel discrete model granular material incorporating rolling resistance [J]. Computers and Geotechnics, 2005, 32(4): 340-357.
[35] JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses [J]. Computers and Geotechnics, 2013, 54:104-116.
[36] LI W, HUANG Y, CUI Y, et al. Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion [J]. Journal of Terra mechanics, 2010, 47(3): 161-172.
[37] 周健,苏燕,池永. 颗粒流模拟土的工程特性[J]. 岩土工程学报,2006, 28(3): 391-396.
ZHOU Jian, SU Yan, CHI Yong. Simulation of soil properties by particle flow code [J]. Chinese Journal of Geo technical, 2006, 28(3): 391-396.
[38] 邹猛,李建桥,贾阳,等. 月壤静力学特性的离散元模拟[J]. 吉林大学学报, 2008, 38(2): 383-387.
ZOU Meng, LI Jian qiao, JIA Yang, et al. Statics characteristics of lunar soil by DEM simulation [J]. Journal of Jilin University, 2008, 38(2): 383-387.
[39] MATSUSHIMA T, SAOMOTO H. Discrete element modeling for irregularly shaped sand grains [C] ∥ Proceedings of NUMGE2002: Numerical Methods in Geotechnical Engineering. Paris: LCPC, 2002: 239-246.
[40] MATSUSHIMA T, KATAGIRI J, UESUGI K, et al. Image based modeling of lunar soil simulant for 3D DEM simulations [C] ∥ Earth and Space 2006: Engineering, Construction, and Operations in Challenging Environment. Houston: ASCE, 2006: 1-8.
[41] MATSUSHIMA T, KATAGIRI J, UESUGI K, et al. 3D shape characterization and image based DEM simulation of the lunar soil simulant FJS 1 [J]. Journal of Aerospace Engineering, 2009, 22(1): 15-23.
[42] MATSUSHIMA T, KATAGIRI J, SAIKI K, et al. 3D Particle characteristics of highland lunar soil (No.60501) obtained by micro X ray CT [C] ∥ Earth and Space 2008: Engineering, Science, Construction, and Operations in Challenging Environment. Long Beach: ASCE, 2008: 1-8.
[43] SOMRIT C, NAKAGAWA M. Simulation of agglutinates formation [J]. Earth and Space, 2006, 188(35): 1-7.
[44] TRYANA V G, MASAMI N. Modeling of agglutinates and its mechanical properties [C] ∥ Earth and Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach: ASCE, 2008: 1-8.
[45] HASAN A, ALSHIBLI K A. Discrete element modeling of strength properties of Johnson Space Center (JSC 1 A) lunar regolith simulant [J]. Journal of Aerospace Engineering, 2010, 23(3): 157-165.
[46] 蒋明镜, 郑敏, 王闯. 月壤双轴试验的剪切带离散元数值分析[J]. 岩土力学, 2012, 33(12): 3801-3809.
JIANG Ming jing, ZHENG Min, WANG Chuang. Distinct element analysis of shear band of lunar soil in biaxial tests [J]. Rock and Soil Mechanics, 2012, 33(12): 3801-3809.
[47] WILLMAN B M, BOLES W W. Soil tool interaction theories as they apply to lunar soil simulant [J]. Journal of Aerospace Engineering, 1995, 8(2): 88-99.
[48] KARAFIATH L. Friction between solids and simulated lunar soils in ultrahigh vacuum and its significance for the design of lunar roving vehicles [J]. Nbs Space Simulation, 1970: 225-244.
[49] 孙刚,高峰,李雯. 地面力学及其在行星探测研究中的应用[J]. 力学进展, 2007, 37(3): 453-465.
SUN Gang, GAO Feng, LI Wen. Terra mechanics and its application to planetary exploration [J]. Advances in Mechanics, 2007, 37(3): 453-465.
[50] JIANG M J, LIU F, SHEN Z F, et al. Distinct element simulation of lugged wheel performance under extraterrestrial environment effects [J]. Acta Astronautica, 2014, 99: 37-51.
[51] JIANG M J, WANG X X, ZHENG M, et al. Interaction between lugged wheel of lunar rover and lunar soil by DEM with a new contact model [C] ∥ Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. Pasadena:ASCE, 2012: 155-164.
[52] 高峰, 李雯, 孙刚, 等. 模拟月壤可行驶性的离散元数值分析[J]. 北京航空航天大学学报, 2009, 35(4): 501504, 5-13.
GAO Feng, LI Wen, SUN Gang, et al. Numerical analysis on travel ability of lunar soil simulant by means of distinct element method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 501504, 5-13.
[53] LI W, GAO F, JIA Y. Tractive performance analysis on radially deployable wheel configuration of lunar rover vehicle by discrete element method [J]. Chinese Journal of Mechanical Engineering, 2008, 21(5): 13-18.
[54] 李雯,高峰,贾阳,等. 深空探测车单轮牵引性能的离散元仿真[J]. 北京航空航天大学学报, 2008, 34(5): 524-528.
LI Wen, GAO Feng, JIA Yang, et al. Numerical simulation of tractive performance for planetary rover vehicle wheel by discrete element method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5): 524-528.
[55] 崔燚,李雯,王浚,等. 梯形齿车轮月面牵引性能的离散元分析[J]. 北京航空航天大学学报,2010, 36(3): 253-256.
CUI Yi, LI Wen, WANG Jun, et al. Numerical analysis on traction performance of trapezia lugged wheel by distinct element method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3): 253-256.
[56] 李建桥,邹猛,贾阳,等. 月球车轮与月壤相互作用动力学模拟[J]. 农业机械学报, 2008, 39(4): 1-4, 23.
LI Jian qiao, ZOU Meng, JIA Yang, et al. Research on the interaction between lunar rover wheel and lunar soil by simulation [J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(4): 1-4, 23.
[57] 李因武,李建桥,邹猛,等. 月壤力学性质对月球车牵引性能影响的模拟[J]. 农业机械学报, 2009, 40(1): 1-4.
LI Yin wu, LI Jian qiao, ZOU Meng, et al. Simulation of traction ability of lunar rover with different mechanics of lunar soil [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1):1-4.
[58] KANAMORI H, AOKI S, NAKASHIMA H. Terra mechanics of a micro lunar rover [C] ∥ Earth and Space 2004: Engineering, Construction, and Operations in Challenging Environment.  Houston: ASCE, 2004: 123-130.
[59] NAKASHIMA H, AOKI S, KANAMORI H, et al.Concept of virtual soil bin by DEM for lunar locomotion studies [C] ∥ Earth and Space 2006: Engineering, Construction, and Operations in Challenging Environment. Houston: ASCE, 2006: 1-8.
[60] NAKASHIMA H, FUJII H, OIDA A, et al. Parametric analysis of lugged wheel performance for a lunar micro rover by means of DEM [J]. Journal of Terra mechanics, 2007, 44(2): 153-162.
[61] NAKASHIMA H, FUJII H, OIDA A, et al. Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain [J]. Journal of Terra mechanics, 2010, 47(5): 307-321.
[62] NAKASHIMA H, SHIOJI Y, TATEYAMA K, et al. Specific cutting resistance of lunar regolith simulant under low gravity conditions [J]. Journal of Space Engineering, 2008, 1(1): 58-68.
[63] 蒋明镜, 王新新. 不同重力场下静力触探试验离散元数值分析[J]. 岩土力学, 2013, 34(3): 863-873.
JIANG Ming jing, WANG Xin xin. Numerical analysis of cone penetration tests under different gravity fields by distinct element method [J]. Rock and Soil Mechanics, 2013, 34(3): 863-873.
[64] 蒋明镜, 戴永生, 王新新.低重力环境下静力触探贯入机理离散元分析[J]. 岩土工程学报, 2014, 36(11): 2045-2053.
JIANG Ming jing, DAI Yong sheng, WANG Xin xin. DEM analysis of cone penetration tests under low gravity conditions [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2045-2053.
[65] 谢宇明,卿启湘,汤钦卿. 月壤的钻取采样离散元动态行为研究[J]. 工程设计学报, 2013, 20(6): 476-481.
XIE Yu ming, QING Qi xiang, TANG Qin qing. Dynamically behavioral research of lunar soil drilling and sampling by DEM [J]. Chinese Journal of Engineering Design, 2013, 20(6): 476-481.
[66] 刘天喜,魏承,马亮,等. 大颗粒岩块对月壤钻取过程的影响分析[J]. 岩土工程学报, 2014, 36(11): 2118-2126.
LIU Tian xi, WEI Cheng, MA Liang, et al. Effect of large granular rocks on drilling process of lunar soils [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 21182126.
[67] 梁磊,魏承,赵阳. 浅表层月壤铲挖采样的振动减阻技术仿真研究[J]. 航天器环境工程, 2013, 30(3): 256-262.
LIANG Lei, WEI Cheng, ZHAO Yang. Simulation of vibration drag reduction in the excavation sampling of lunar regolith [J]. Spacecraft Environment Engineering, 2013, 30(3): 256-262.
[68] BUI H H, KOBAYASHI T, FUKAGAWA R, et al. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations [J]. Journal of Terra mechanics, 2009, 46(3): 115-124.
[69] 刘天喜.浅层月壤采样过程的机土耦合作用研究[D].哈尔滨:哈尔滨工业大学,2011.
LIU Tian xi. Research on tool soil interaction in the superficial lunar regolith sampling process [D]. Harbin: Harbin Institute of Technology, 2011.
[70] NAKASHIMA H. A serial domain decomposition method for discrete element method simulation of soil wheel interactions [J]. Agricultural Engineering International: the CIGR Journal, 2008, 10: 1-10.
[71] NAKASHIMA H, OIDA A. Algorithm and implementation of soil tire contact analysis code based on dynamic FE DE method [J]. Journal of Terra mechanics, 2004, 41(2/3): 127-137.
[72] HORNER D A, PETERS J F,  CARRILLO A. Large scale discrete element modeling of vehicle soil interaction [J]. Journal of Engineering Mechanics, 2001, 127: 1027-1032.
[73] DANG H K, MEGUID M A. An efficient finite discrete element method for quasi static nonlinear soil–structure interaction problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(2): 130-149.
[74] ELMEKATI A, SHAMY U E. A practical co simulation approach for multiscale analysis of geotechnical systems [J]. Computers and Geotechnics, 2010, 37(4): 494-503.
[75] WELLMANN C, WRIGGERS P. A two scale model of granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 205: 46-58.

[1] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2319-2327.
[2] ZHANG Jun feng, DAI Xiao song, ZOU Wei lie, XU Shun ping, LI Zi you. Experiments on pavement performance of solidified sediment modified with cement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2165-2171.
[3] HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen. Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1434-1440.
[4] TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1618-1623.
[5] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1170-1179.
[6] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1068-1074.
[7] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2111-2117.
[8] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1824-1829.
[9] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1805-1814.
[10] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1579-1584.
[11] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1585-1592.
[12] NIU Hui, WANG Jin-feng, ZHANG Yi-ping, ZHANG Zhi-cheng, YU Ya-nan. Study of incremental launching of space-curved butterfly-arch bridge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1205-1212.
[13] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1157-1163.
[14] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 595-601.
[15] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 502-507.